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Abstract

Many so called paradoxes of quantum mechanics are clarified when the measurement

equipment is treated as a quantized system. Every measurement involves nonlinear processes.

Selfconsistent formulations of nonlinear quantum optics are relatively simple. Hence optical

measurements, such as the quantum nondemolition (QND) measurement of photon number,

are particularly well suited for such a treatment. It shows that the so called %ollapse of the

wave function" is not needed for the interpretation of the measurement process. Coherence

of the density matrix of the signal is progressively reduced with increasing accuracy of the

photon number determination. If the QND measurement is incorporated into the double slit

experiment, the contrast ratio of the fringes is found to decrease with increasing information
on the photon number in one of the two paths.

1 Introduction

The Theory of Quantum Measurement has a long and venerable history. Many of the original

discussions of the founders of quantum mechanics are contained in the reprint volume of Wheeler

and Zurek[Z]. Yet, inspite of its long history, the issues raised in these well known discussions

have not been fully settled.

In this paper we attempt to make a modest contribution to this weighty problem. In doing so

we are guided by a quote of Niels Bohr which reads: "... one sometimes speaks of "disturbance

of phenomena by observation" or "creation of physical attributes to atomic objects by measure-

ment." Such phrases, however, are apt to cause confusion, since words like phenomena and obser-

vation, just as attributes and measurements, are here used in a way incompatible with common

language and practical definition. On the lines of objective description, [I advocate using] the

word phenomenon to refer only to observations obtained under circumstances whose description

includes an account of the whole experimental arrangement. In such terminology, the observa-

tional problem in quantum physics is deprived of any special intricacy and we are, moreover, di-

rectly reminded that every atomic phenomenon is closed in the sense that its observation is based

on registrations obtained by means of suitable amplification devices with irreversible functioning

such as, for example, permanent marks on a photographic plate, caused by the penetration of
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electrons into the emulsion" [Ref. 1, p. 3]. We have underlined the words that we consider

particularly worthy of note. Bohr requires a description of the whole experimental arrangement.

Further, if one is to state the outcome of the experiment in classical language, large amplification

is required.

At the risk of making statements that may be considered even more controversial by the ad-

herents of the Einsteinian school, we should like to strengthen Bohr's quote by saying: "Physical

reality cannot be formulated until the measurement equipment used to determine the observables

is specified and treated as a quantum system. The large gain of the measurement equipment

provides the classical interface at the output of the measurement apparatus."

Much of the controversy involving quantum measurements is the consequence of the fact that

it is very difficult to describe well the measuring equipment_ according to our interpretation, to

describe it quantum mechanically.

In quantum optics we have made great progress in describing optical components quantum

mechanically. The theory has been well tested experimentally. The squeezing by a parametric

amplifier is well understood theoretically and amply confirmed experimentally[2-6]. Less exten-

sively explored, yet also tested, is the self-phase modulation and squeezing in optical fibers via

the optical Kerr effect [_-9]. Hence it appears natural to use the well tested quantum description

of optical devices to construct a measurement apparatus and test some of the predictions of

quantum mechanics using such a measurement apparatus. This is the main objective of this

paper. We start by describing a Quantum Nondemolition Measurement of the photon number

of a signal via a nonlinear Mach-Zehnder interferometer. We follow the development of the

composite wave function of the signal and measurement apparatus to the output. We shall see

that the photon number in the signal can be determined with a negligible probability of error

if the gain of the measurement apparatus is large enough. Further, when this is the case, the

density matrix of the signal, obtained by tracing over the (Hilbert) coordinates of the measure-

ment equipment, is diagonalized. Finally, since the probability of error of measuring a particular

photon number approaches zero, each measurement, and not the whole ensemble, can be in-

terpreted as yielding an interpretable result. This corresponds to the yon Neumann projection

operator interpretation. However, when the gain is not very large, the signal density matrix

does not decohere, it is not diagonalized. This is consistent with Bohr's dictum that we can put

the measurement results into classical language only if the gain of the measurement equipment

is very large.

When no measurement is performed, and the signal and "measurement" beams are passed

on into a second nonlinear Mach-Zehnder interferometer with a Kerr coefficient of opposite

sign, the entire action of the first intefferometer can be undone; the wave functions emerge

disentangled! This confirms the reversibility of quantum mechanics.

We conclude with the double slit experiment. We put a nonlinear Mach-Zehnder mea-

surement apparatus in each of the two light beams. As the accuracy of the photon number

determination is systematically increased, the contrast of the interference fringes decreases ac-

cordingly.
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2 The Quantum Nondemolition Measurement

Figure 1 shows a nonlinear Mach-Zehnder interferometer. The signal beam _n at one frequency

and the probe beam b_ at another frequency enter a Kerr medium through a dichroic mirror. At

the end of the Kerr medium they are again separated by another dichroic mirror. A portion of the

probe beam has been passed on directly for interference. Classically, the Kerr medium produces

a phase shift on the probe beam that can be measured giving an indication of the intensity of

the signal beam. Quantum mechanically, the process is described by the Hamiltonian of the
Kerr medium [1°]

•- ^t ^ _t_= n_aeaso o (1)

where _ is a factor proportional to the Kerr coefficient; _, is the annihilation operator of the

signal photons, b that of the probe photons. They obey the usual commutation relations:

[a,,a]] = 1 (2)

: 1 (3)

It should be noted that the Hamiltonian (1) does not account for a self-phase shift. This has

been left out for convenience. A medium resonant at the sum frequency of signal and probe

would be described by such a simplified Hamiltonian.

The two portions of the probe beam are combined by a beam splitter with the Hamiltonian:

= hM[bt_ -I- 8t/_] C4)

As usual, one may consider the wave packets to evolve in time as they propagate along the

system. If the beam splitter is 50/50, the parameter M must be chosen

- (5)
v 0 4

where l is the length of the medium and v e is the group velocity, l/vg is the travel time.

From the known Hamiltonian one may determine the evolution of the wave function I¢), ll3)10)

of the three input ports. They are products at the input, and become entangled at the output.

We denote the output annihilation operators by ] and _. The balanced photodetector measures

the expectation values of the difference current operator ] = it] _ Ot_ and its moments[ TM.

(]) = I 1' sin(, ala) , l l'ala. (6)

The expectation value traced over the Hilbert space of the probe yields the sine of the signal

photon operator. If the sine function can be expanded to first order, it becomes the photon

operator. The mean square fluctuations follow from the second moment and are [u ]

(IMI') = I 1' (7)

if the signal is in a photon number state. This is shot noise since 1/312 is the photon number in

the probe beam.
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FIG. 1. Schematic of nonlinear Mach-Zehnder interferometer and balanced de-

tector.
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FIG. 2. Two nonlinear Mach-Zehnder interferometers with media of equal and

opposite Kerr coefficients.
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The probability of error follows from the mean square fluctuations (7) that approach gaus-
sians in the large photon number limit{Ill:

1 ,¢,,,2, 8
iDerror _'_ 25/--'re-'re TM pI /

V (8)

If [_/_[2 >> 1, the probability of error can be made arbitrarily small. The physical meaning of

this quantitity can be fathomed as follows. _lfl[ 2 is the phase shift due to the probe photons,

itself is the phase shift due to one photon. The geometric mean of these two products has to

be made very large. If we used fiber interferometers, these operating parameters are not easily

achieved. Here, however, we are not concerned with the practical realization of the measurement

apparatus, but only with the theoretical conclusions that can be drawn from it. In particular,

we find that the probability of error can be made arbitrarily small, for ]_/_1 = 10, it is 10 -e. This

:_eans that each measurement has vanishing error probability. Hence one may interpret every

measurement, and not only the ensemble, as yielding a definite result. This is analogous to the

von Neumann projection postulate which interprets a measurement as projecting the state into

an eigenstate. Pursuing this interpretation further, we can say that a measurement with the

Mach-Zehnder interferometer at large gain projects the signal into a photon state.

3 The Density Matrix

The trace of the density matrix over the measurement system part at the output of the signal-

measurement system of Fig. 1 can be evaluated for a signal wave function[Ill:

= chin) (9)
n

It is

r_=O lr/,!

(10)
O0 2 2

m,t=O error probability

In the limit of large gain, the density matrix traced over the measurement equipment becomes

diagonal at the same rate as the probability of error approaches zero (note the exponential

factor!). Hence, again, we see that the signal acquires a classical (decohered) appearance when

the gain of the measurement system (l_#t) is made very large.

4 Reversibility

If one does not perform a measurement on the probe beam, but reintroduces it in the second

Mach-Zehnder as shown in Fig. 2, which has a Kerr coefficient of opposite sign, one can

disentangle entirely the wave functions. This shows, of course, the reversibility of quantum
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mechanics if no measurement intervenes in the process. Of course, no measurement could have

been undertaken, because the probe beam was completely recycled. This brings us back to

the act of measurement. A measurement is an irreversible process that prevents recycling.

Indeed, in the present example the probe beam is passed into a balanced detector in which it

is absorbed. Only then can one apply the homodyne photon detection formula to evaluate the

current operator statistics.

5 Tracing, Decoherence and the Act of Measurement

The density matrix of the signal system becomes diagonal in the signal Hilbert space when traced

over the probe space. Tracing is a mathematical operation which, according to the postulates of

quantum mechanics, evaluates expectation values. In the context of the derivation of the signal

density matrix, the reduced density matrix can be interpreted as a "Gedankenexperiment" on

the density matrix of the signal after passage through the Mach-Zehnder. Accompanied by the

statement that the signal and probe systems would never be combined again, the entanglement

that in fact exists between the two systems could never be reversed. In this sense, the reversibility

of quantum mechanics is broken. In an actual measurement, of course, the apparatus works on

the probe subspace, causes partial or total decoherence in that space, and leads "de facto" to

an irreversible action.

6 Two Slit Experiment

Finally, let us look at the "two-slit" interference experiment of Fig. 3. The two slits are here

replaced by the two arms of an interferometer. A phase shifter in one of the arms changes the

phase of the superimposed beams. If the two beams were perfectly coherent, the intensity at

the detector would have to show perfect extinction. However, we mount two QND apparati in

each of the arms to ascertain the number of photons passing through them individually. The

gain of the apparati can be adjusted, thus changing the accuracy of the measurement of the

photon number passing through each arm. One can then compute the expectation value of the

contrast and finds it to be [11] (see Fig. 4)

(i) = e -I_BI_/4cos # (11)

Thus, a similar exponential factor as the one that appears in the error probability determines

the extinction of the contrast. The factor is squared, because two measurements are being

performed. Here again we find that the transition between the behavior of the photon as a wave

and that of a particle is a continuous one. The accuracy of the determination of the photon

number determines how much the photon behaves as a particle.
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FIG. 3. An interferometer representing two-slit interference and attached QND

measurement apparati.
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FIG. 4. Expectation value of detector current versus phase and error probability

of photon number determination.
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7 Conclusion

We started with the postulate that a proper formulation of a quantum measurement has to

quantize the measuring apparatus as well. The quantum formalisms developed for optical com-

ponents enable one to do a full quantum analysis of an optical measurement apparatus. The

measurement apparatus of photon number with infinite gain yields results that can be described

in classical language: photons behave as particles (since we chose a particle measurement appa-

ratus). When the gain is not infinite, the behavior is more duplicitous, it is not what one would

call the behavior of a classical particle. This confirms Bohr's statement that it is necessary

to have large gain to obtain measurement results that can be put into classical language. We

also found that a measurement with infinite gain is equivalent to a projection operation on the

signal.

If no measurement is undertaken, the entanglement of the signal and probe states can be

fully undone by an inverse apparatus.

Finally, the "double-slit" experiment can also be described in terms of partial knowledge of

the photon number in each of the paths. If the knowledge is only partial, there can still be

interference of the two beams.
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